miR-590-5p functions as an onco-miR or an anti-onco-miR in various types of cancers. and cell cycle arrest. We also demonstrated that increasing of miR-590-5p in 5-Fu resistant patients and liver cancer cells, and knockdown of miR-590-5p enhances chemosensitivity to 5-Fu in liver cancer. FOXO1 GSK690693 ic50 was identified as a direct and necessary target of miR-590-5p during regulating liver cancer growth. Taken together, our findings provide insights into the role of miR-590-5p in liver cancer. Moreover, it is suggested that miR-590-5p can serve as a novel therapeutic target and predictive biomarker for liver cancer. was demonstrated to effectively suppress angiogenesis and tumor growth and downregulate the expression of VEGF, Bcl-2, and PCNA in HCC [8]. MicroRNAs (miRNAs) are a family of ~19-22-bp non-coding RNAs that regulate gene expression by binding to their target mRNAs and inducing mRNA cleavage or translational inhibition. Accumulating evidence has suggested the importance of miR-590 in cancer progression. miR-590-5p was reported to be upregulated as a tumor oncogene in human cervical cancer [9], colorectal cancer [10], lung adenocarcinoma [11], and gastric cancer [12]. On the other hand, miR-590-5p has also been demonstrated to exert an anti-tumor role in colorectal cancer [13,14] and breast cancer [15]. However, the expression patterns and biological functions of miR-590-5p in liver cancer remain unclear. The present study aims to determine the role of miR-590-5p in liver cancer. The GSK690693 ic50 potential predictive role of miR-590-5p in disease-free survival of liver cancer patients was analyzed using a clinical database. and experiments were performed to investigate the biological function of miR-590-5p in liver cancer. Luciferase assays and other molecular experiments were conducted to elucidate the mechanisms underlying miR-590-5p mediated regulation of liver cancer progression. Our study identified miR-590-5p as a novel therapeutic and predictive target for liver cancer. Materials and methods Clinical samples and analysis Human liver cancer tissues and adjacent normal tissues (34 pairs) were obtained with CD247 informed consent under a general waiver by the Academic Medical Center Institutional Review Board for the proper secondary use of human material and were obtained from the Peoples Hospital of Sichuan from Jan 2017 to Sep 2017. Experiments described were approved by the Ethics Committee of Sichuan Academy of Medical Sciences and Sichuan Provincial GSK690693 ic50 Peoples Hospital (Chengdu, China). The tumor grade were identified according to clinical diagnosis. The potential correlation between miR-590 family and disease-free survival was analyzed by the clinical database Kaplan-Meier Plotter (http://kmplot.com). The plasma from 40 liver cancer patients were collected before 5-Fu treatment. The tumor size were measured by enhanced CT at the beginning of 5-Fu treatment and 6 weeks post 5-Fu treatment. The responses of liver cancer patients to 5-Fu chemotherapy was divided into 5-Fu sensitive (5-Fu-S) and 5-Fu resistant (5-Fu-R) following to the rules of RECIST1.1. The patients of complete remission and partial remission were defined as 5-Fu-S and of progressive disease were defined as 5-Fu-resistant. Cell culture and treatment Liver cancer cell lines, HepG2, SNU398, SMMC7721, Bel-7404, SK-Hep-1 and normal liver cell line GSK690693 ic50 LO2 were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). Cells were grown in culture medium in Dulbeccos minimal essential medium (DMEM) supplemented with 10% FBS (Gibco) and antibiotics (50 U/ml penicillin and 50 g/ml streptomycin, Gibco). All the cells were maintained at 37C with 5% CO2 and humidified atmosphere. The chemotherapy resistant SNU-398 (SNU-398-R) cells were selected by adding 5-fluorouracil (5-Fu, Sigma, MA, USA) (from 0.1 M to 2.0 M progressively). The lentivirus-based miR-590-5p overexpression system (lenti-miR-590-5p), knockdown system (lenti-anti-miR-590-5p) and the miRNA-negative control (lenti-NC) were purchased from GenePharma (Shanghai, China). The lentivirus were used to infect HepG2, Bel-7404 and SNU-398 cells with 20 MOI and the.